
Geo-Spatial Tools
Geohackweek Tutorials for Freshwater Research and Education
Freshwater research using large data with computationally intensive analyses is an area of ongoing development. CUAHSI staff and University of Washington Freshwater researchers are partnering with eScience Geohackweek organizers to provide ongoing access to tutorials developed for Geohackweek 2017, as well as helpful links available on HydroShare Help pages. [sentence about content and how to contribute here].
Geohack Python Basics
Introduction to Conda What is Conda? How can I use conda in managing all the libraries for my projects? (Don Setiawan, Applied Physics Laboratory, University of Washington)
Getting Started with Git What is Git and Github? Why are we using Git? (Ben Weinstein, Oregon State University)
Cloud Computing in Geospatial Sciences How can cloud computing help (Amanda Tan, eScience Institute, UW IT.)
Cloud Computing on HydroShare Use a NSF sponsored platform service (Tony Castronova, CUAHSI)
Introduction to JupyterHub What is JupyterHub? (Amanda Tan eScience Institute, UW IT, Catherine Kuhn,
School of Forest & Environmental Sciences, University of Washington)
Introduction to Docker How to use Docker? (Amanda Tan, eScience Institute, UW IT.)
Vector Data Processing using Python Tools
Contacts: Emilio Mayorga and Don Setiawan, Applied Physics Laboratory, University of Washington
Create a Vector Environment on your computer
Geospatial Concepts What is ‘vector’ geospatial data all about?
Encodings, Formats and Libraries What are common ways to encode vector geospatial data in Python, and how do they relate to broader encoding standards?
GeoPandas Introduction What is GeoPandas? What functionality and advantages does GeoPandas offer over other Python geospatial tools? What geospatial storage, analytical and plotting capabilities does it include? What is its relationship to Pandas?
GeoPandas Advanced Topics What additional capabilities does GeoPandas provide, including data access, plotting and analysis? How does it integrate with other common Python tools? How do GeoPandas data objects integrate with analyses of raster data over vector geospatial features?
Raster Processing with Python Tools
Contacts: James Douglass, Natural Capital Project & David Shean, Applied Physics Laboratory, University of Washington
Introduction: Working with Raster Data
Geospatial Concepts: Raster Data What is a raster? What sorts of information does a raster typically model? What are the major characteristics of a raster dataset? What assumptions does the format imply?
Encodings, Formats and Libraries What sorts of formats are available for representing raster datasets?
Working with Raster Datasets How can I extract pixel values from a raster dataset? How might I write pixel values out to a new raster file? What raster dataset formats (reading and writing) are supported?
Rainier DEM Example How can I work with rasters from different sources, with different projection, extent, resolution, etc.?
Google Earth Engine Jill Deines Earth and Environmental Sciences, Michigan State University & Catherine Kuhn, School of Forest & Environmental Sciences, University of Washington